
X11 Input Extension Protocol Specification

Version 1.0

MIT X Consortium Standard

X Version 11, Release 5

Mark Patrick Ardent Computer

George Sachs Hewlett-Packard

Notice
Copyright 1989, 1990, 1991 by Hewlett-Packard Company, Ardent Computer, and the Mas-
sachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this documentation for any purpose and without
fee is hereby granted, provided that the above copyright notice and this permission notice appear
in all copies. MIT, Ardent, and Hewlett-Packard make no representations about the suitability for
any purpose of the information in this document. It is provided "as is" without express or implied
warranty.

1.1. Input Extension Overview
This document defines an extension to the X11 protocol to support input devices other than the
core X keyboard and pointer. An accompanying document defines a corresponding extension to
Xlib (similar extensions for languages other than C are anticipated). This first section gives an
overview of the input extension. The next section defines the new protocol requests defined by
the extension. We conclude with a description of the new input events generated by the addi-
tional input devices.

1.2. Design Approach
The design approach of the extension is to define requests and events analogous to the core
requests and events. This allows extension input devices to be individually distinguishable from
each other and from the core input devices. These requests and events make use of a device
identifier and support the reporting of n-dimensional motion data as well as other data that is not
reportable via the core input events.

1.3. Core Input Devices
The X server core protocol supports two input devices: a pointer and a keyboard. The pointer
device has two major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. To accomplish this, the server echoes a cursor at the current position of the X
pointer. Unless the X keyboard has been explicitly focused, this cursor also shows the current
location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document as the core devices, and the input
events they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, and MotionNotify)
are known as the core input events. All other input devices are referred to as extension input dev-
ices and the input events they generate are referred to as extension input events. This input exten-
sion does not change the behavior or functionality of the core input devices, core events, or core
protocol requests, with the exception of the core grab requests. These requests may affect the
synchronization of events from extension devices. See the explanation in the section titled
"Event Synchronization and Core Grabs".

Selection of the physical devices to be initially used by the server as the core devices is left
implementation-dependent. Requests are defined that allow client programs to change which
physical devices are used as the core devices.

1.4. Extension Input Devices
The input extension controls access to input devices other than the X keyboard and X pointer. It
allows client programs to select input from these devices independently from each other and
independently from the core devices.

A client that wishes to access a specific device must first determine whether that device is con-
nected to the X server. This is done through the ListInputDevices request, which will return a
list of all devices that can be opened by the X server. A client can then open one or more of these
devices using the OpenDevice request, specify what events they are interested in receiving, and
receive and process input events from extension devices in the same way as events from the X
keyboard and X pointer. Input events from these devices are of extension types (Devi-
ceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, DeviceMotionNo-
tify, etc.) and contain a device identifier so that events of the same type coming from different
input devices can be distinguished.

Any kind of input device may be used as an extension input device. Extension input devices may
have 0 or more keys, 0 or more buttons, and may report 0 or more axes of motion. Motion may
be reported as relative movements from a previous position or as an absolute position. All valua-
tors reporting motion information for a given extension input device must report the same kind of

1

X Input Extension Protocol Specification X11, Release 5

motion information (absolute or relative).

This extension is designed to accommodate new types of input devices that may be added in the
future. The protocol requests that refer to specific characteristics of input devices organize that
information by input classes. Server implementors may add new classes of input devices
without changing the protocol requests. Input classes are unique numbers registered with the X
Consortium. Each extension input device may support multiple input classes.

All extension input devices are treated like the core X keyboard in determining their location and
focus. The server does not track the location of these devices on an individual basis, and there-
fore does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointer. Like the core X keyboard, some may be explicitly focused.
If they are not explicitly focused, their focus is determined by the location of the core X pointer.

Input events reported by the server to a client are of fixed size (32 bytes). In order to represent
the change in state of an input device the extension may need to generate a sequence of input
events. A client side library (such as Xlib) will typically take these raw input events and format
them into a form more convenient to the client.

1.4.1. Event Classes
In the core protocol a client registers interest in receiving certain input events directed to a win-
dow by modifying that window’s event-mask. Most of the bits in the event mask are already
used to specify interest in core X events. The input extension specifies a different mechanism by
which a client can express interest in events generated by this extension.

When a client opens a extension input device via the OpenDevice request, an XDevice structure
is returned. Macros are provided that extract 32-bit numbers called event classes from that struc-
ture, that a client can use to register interest in extension events via the SelectExtensionEvent
request. The event class combines the desired event type and device id, and may be thought of as
the equivalent of core event masks.

1.4.2. Input Classes
Some of the input extension requests divide input devices into classes based on their functional-
ity. This is intended to allow new classes of input devices to be defined at a later time without
changing the semantics of these requests. The following input device classes are currently
defined:

KEYThe device reports key events.

BUTTON
The device reports button events.

VALUATOR
The device reports valuator data in motion events.

PROXIMITY
The device reports proximity events.

FOCUS
The device can be focused and reports focus events.

FEEDBACK
The device supports feedbacks.

OTHER
The ChangeDeviceNotify, DeviceMappingNotify, and DeviceStateNotify
macros may be invoked passing the XDevice structure returned for this device.

Each extension input device may support multiple input classes. Additional classes may be
added in the future. Requests that support multiple input classes, such as the ListInputDevices
function that lists all available input devices, organize the data they return by input class. Client
programs that use these requests should not access data unless it matches a class defined at the

2

X Input Extension Protocol Specification X11, Release 5

time those clients were compiled. In this way, new classes can be added without forcing existing
clients that use these requests to be recompiled.

2. Requests
Extension input devices are accessed by client programs through the use of new protocol
requests. This section summarizes the new requests defined by this extension. The syntax and
type definitions used below follow the notation used for the X11 core protocol.

2.1. Getting the Extension Version
The GetExtensionVersion request returns version information about the input extension.

GetExtensionVersion
name: STRING

=>
present: BOOL
protocol-major-version: CARD16
protocol-minor-version: CARD16

The protocol version numbers returned indicate the version of the input extension sup-
ported by the target X server. The version numbers can be compared to constants defined
in the header file XI.h. Each version is a superset of the previous versions.

2.2. Listing Available Devices
A client that wishes to access a specific device must first determine whether that device is
connected to the X server. This is done through the ListInputDevices request, which
will return a list of all devices that can be opened by the X server.

ListInputDevices
=>

input-devices: LISTofDEVICEINFO

where

DEVICEINFO: [type: ATOM
id: CARD8
num_classes: CARD8
use: {IsXKeyboard, IsXPointer, IsExtensionDevice}
info: LISTofINPUTINFO
name: STRING8]

INPUTINFO: {KEYINFO, BUTTONINFO, VALUATORINFO}

KEYINFO: [class: CARD8
length: CARD8
min-keycode: KEYCODE
max-keycode: KEYCODE
num-keys: CARD16]

BUTTONINFO: [class: CARD8
length: CARD8
num-buttons: CARD16]

3

X Input Extension Protocol Specification X11, Release 5

VALUATORINFO: [class: CARD8
length: CARD8
num_axes: CARD8
mode: SETofDEVICEMODE
motion_buffer_size: CARD32
axes: LISTofAXISINFO]

AXISINFO: [resolution: CARD32
min-val: CARD32
max-val: CARD32]

DEVICEMODE: {Absolute, Relative}

Errors: None

This request returns a list of all devices that can be opened by the X server, including the core X
keyboard and X pointer. Some implementations may open all input devices as part of X initiali-
zation, while others may not open an input device until requested to do so by a client program.

g The information returned for each device is as follows:

The type field is of type Atom and indicates the nature of the device. Clients may determine
device types by invoking the XInternAtom request passing one of the names defined in the
header file XI.h. The following names have been defined to date:

MOUSE
TABLET
KEYBOARD
TOUCHSCREEN
TOUCHPAD
BUTTONBOX
BARCODE
KNOB_BOX
TRACKBALL
QUADRATURE
SPACEBALL
DATAGLOVE
EYETRACKER
CURSORKEYS
FOOTMOUSE
ID_MODULE
ONE_KNOB
NINE_KNOB

The id is a small cardinal value in the range 0-128 that uniquely identifies the device. It is
assigned to the device when it is initialized by the server. Some implementations may not open
an input device until requested by a client program, and may close the device when the last client
accessing it requests that it be closed. If a device is opened by a client program via XOpenDev-
ice, then closed via XCloseDevice, then opened again, it is not guaranteed to have the same id
after the second open request.

The num_classes field is a small cardinal value in the range 0-255 that specifies the number of
input classes supported by the device for which information is returned by ListInputDevices.
Some input classes, such as class Focus and class Proximity do not have any information to be
returned by ListInputDevices.

4

X Input Extension Protocol Specification X11, Release 5

The use field specifies how the device is currently being used. If the value is IsXKeyboard, the
device is currently being used as the X keyboard. If the value is IsXPointer, the device is
currently being used as the X pointer. If the value is IsXExtensionDevice, the device is available
for use as an extension device.

The name field contains a pointer to a null-terminated string that corresponds to one of the
defined device types.

g InputInfo is one of: KeyInfo, ButtonInfo or ValuatorInfo. The first two fields are common
to all three:

The class field is a cardinal value in the range 0-255. It uniquely identifies the class of input for
which information is returned.

The length field is a cardinal value in the range 0-255. It specifies the number of bytes of data
that are contained in this input class. The length includes the class and length fields.

The remaining information returned for input class KEYCLASS is as follows:

min_keycode is of type KEYCODE. It specifies the minimum keycode that the device will
report. The minimum keycode will not be smaller than 8.

max_keycode is of type KEYCODE. It specifies the maximum keycode that the device will
report. The maximum keycode will not be larger than 255.

num_keys is a cardinal value that specifies the number of keys that the device has.

The remaining information returned for input class BUTTONCLASS is as follows:

num_buttons is a cardinal value that specifies the number of buttons that the device has.

The remaining information returned for input class VALUATORCLASS is as follows:

mode is a constant that has one of the following values: Absolute or Relative. Some devices
allow the mode to be changed dynamically via the SetDeviceMode request.

motion_buffer_size is a cardinal number that specifies the number of elements that can be con-
tained in the motion history buffer for the device.

The axes field contains a pointer to an AXISINFO struture.

g The information returned for each axis reported by the device is:

The resolution is a cardinal value in counts/meter.

The min_val field is a cardinal value in that contains the minimum value the device reports for
this axis. For devices whose mode is Relative, the min_val field will contain 0.

The max_val field is a cardinal value in that contains the maximum value the device reports for
this axis. For devices whose mode is Relative, the max_val field will contain 0.

2.3. Enabling Devices
Client programs that wish to access an extension device must request that the server open that
device. This is done via the OpenDevice request.

OpenDevice
id: CARD8

=>

DEVICE: [device_id: XID
num_classes: INT32
classes: LISTofINPUTCLASSINFO]

INPUTCLASSINFO: [input_class: CARD8
event_type_base: CARD8]

5

X Input Extension Protocol Specification X11, Release 5

Errors: Device

This request returns the event classes to be used by the client to indicate which events the client
program wishes to receive. Each input class may report several event classes. For example, input
class Keys reports DeviceKeyPress and DeviceKeyRelease event classes. Input classes are
unique numbers registered with the X Consortium. Input class Other exists to report event
classes that are not specific to any one input class, such as DeviceMappingNotify, ChangeDevi-
ceNotify, and DeviceStateNotify.

g The information returned for each device is as follows:

The device_id is a number that uniquely identifies the device.

The num_classes field contains the number of input classes supported by this device.

g For each class of input supported by the device, the InputClassInfo structure contains the fol-
lowing information:

The input_class is a small cardinal number that identifies the class of input.

The event_type_base is a small cardinal number that specifies the event type of one of the events
reported by this input class. This information is not directly used by client programs. Instead,
the Device is used by macros that return extension event types and event classes. This is
described in the section of this document entitled "Selecting Extension Device Events".

Before it exits, the client program should explicitly request that the server close the device. This
is done via the CloseDevice request.

A client may open the same extension device more than once. Requests after the first successful
one return an additional XDevice structure with the same information as the first, but otherwise
have no effect. A single CloseDevice request will terminate that client’s access to the device.

Closing a device releases any active or passive grabs the requesting client has established. If the
device is frozen only by an active grab of the requesting client, the queued events are released
when the client terminates.

If a client program terminates without closing a device, the server will automatically close that
device on behalf of the client. This does not affect any other clients that may be accessing that
device.

CloseDevice
device: DEVICE

Errors: Device

2.4. Changing The Mode Of A Device
Some devices are capable of reporting either relative or absolute motion data. To change the
mode of a device from relative to absolute, use the SetDeviceMode request. The valid values are
Absolute or Relative.

This request will fail and return DeviceBusy if another client already has the device open with a
different mode. It will fail and return AlreadyGrabbed if another client has the device grabbed.
The request will fail with a BadMatch error if the requested mode is not supported by the device.

SetDeviceMode
device: DEVICE
mode: {Absolute, Relative}

6

X Input Extension Protocol Specification X11, Release 5

Errors: Device, Match, Mode

=>
status: {Success, DeviceBusy, AlreadyGrabbed}

2.5. Initializing Valuators on an Input Device
Some devices that report absolute positional data can be initialized to a starting value. Devices
that are capable of reporting relative motion or absolute positional data may require that their
valuators be initialized to a starting value after the mode of the device is changed to Absolute.
To initialize the valuators on such a device, use the SetDeviceValuators request.

SetDeviceValuators
device: DEVICE
first_valuator: CARD8
num_valuators: CARD8
valuators: LISTOFINT32

Errors: Length, Device, Match, Value

=>
status: {Success, AlreadyGrabbed}

This request initializes the specified valuators on the specified extension input device. Valuators
are numbered beginning with zero. Only the valuators in the range specified by first_valuator and
num_valuators are set. If the number of valuators supported by the device is less than the expres-
sion first_valuator + num_valuators, a Value error will result.

If the request succeeds, Success is returned. If the specifed device is grabbed by some other
client, the request will fail and a status of AlreadyGrabbed will be returned.

2.6. Getting Input Device Controls

GetDeviceControl
device: DEVICE
control: XID

Errors: Length, Device, Match, Value

=>
controlState: {DeviceState}

where

DeviceState: DeviceResolutionState

Errors: Length, Device, Match, Value

This request returns the current state of the specified device control. The device control must be
supported by the target server and device or an error will result.

If the request is successful, a pointer to a generic DeviceState structure will be returned. The
information returned varies according to the specified control and is mapped by a structure

7

X Input Extension Protocol Specification X11, Release 5

appropriate for that control.

GetDeviceControl will fail with a BadValue error if the server does not support the specified con-
trol. It will fail with a BadMatch error if the device does not support the specified control.

Supported device controls and the information returned for them include:

DEVICE_RESOLUTION: [control: CARD16
length: CARD16
num_valuators: CARD8
resolutions: LISTofCARD32
min_resolutions: LISTofCARD32
max_resolutions: LISTofCARD32]

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Valuators are numbered beginning with 0. Resolutions for all valuators on the device are
returned. For each valuator i on the device, resolutions[i] returns the current setting of the resolu-
tion, min_resolutions[i] returns the minimum valid setting, and max_resolutions[i] returns the
maximum valid setting.

When this control is specified, XGetDeviceControl will fail with a BadMatch error if the
specified device has no valuators.

ChangeDeviceControl
device: DEVICE
XID: controlId
control: DeviceControl

where

DeviceControl: DeviceResolutionControl

Errors: Length, Device, Match, Value
=>

status: {Success, DeviceBusy, AlreadyGrabbed}

ChangeDeviceControl changes the specifed device control according to the values specified in the
DeviceControl structure. The device control must be supported by the target server and device or
an error will result.

The information passed with this request varies according to the specified control and is mapped
by a structure appropriate for that control.

ChangeDeviceControl will fail with a BadValue error if the server does not support the specified
control. It will fail with a BadMatch error if the server supports the specified control, but the
requested device does not. The request will fail and return a status of DeviceBusy if another
client already has the device open with a device control state that conflicts with the one specified
in the request. It will fail with a status of AlreadyGrabbed if some other client has grabbed the
specified device. If the request succeeds, Success is returned. If it fails, the device control is left
unchanged.

Supported device controls and the information specified for them include:

DEVICE_RESOLUTION: [control: CARD16
length: CARD16
first_valuator: CARD8

8

X Input Extension Protocol Specification X11, Release 5

num_valuators: CARD8
resolutions: LISTofCARD32]

This device control changes the resolution of the specified valuators on the specified extension
input device. Valuators are numbered beginning with zero. Only the valuators in the range
specified by first_valuator and num_valuators are set. A value of -1 in the resolutions list indi-
cates that the resolution for this valuator is not to be changed. num_valuators specifies the
number of valuators in the resolutions list.

When this control is specified, XChangeDeviceControl will fail with a BadMatch error if the
specified device has no valuators. If a resolution is specified that is not within the range of valid
values (as returned by XGetDeviceControl) the request will fail with a BadValue error. If the
number of valuators supported by the device is less than the expression first_valuator +
num_valuators, a BadValue error will result.

If the request fails for any reason, none of the valuator resolutions will be changed.

2.7. Selecting Extension Device Events
Extension input events are selected using the SelectExtensionEvent request.

SelectExtensionEvent
window: WINDOW
interest: LISTofEVENTCLASS

Errors: Window, Class, Access

This request specifies to the server the events within the specified window which are of interest to
the client. As with the core XSelectInput function, multiple clients can select input on the same
window.

XSelectExtensionEvent requires a list of event classes. An event class is a 32-bit number that
combines an event type and device id, and is used to indicate which event a client wishes to
receive and from which device it wishes to receive it. Macros are provided to obtain event
classes from the data returned by the XOpenDevice request. The names of these macros
correspond to the desired events, i.e. the DeviceKeyPress is used to obtain the event class for
DeviceKeyPress events. The syntax of the macro invocation is:

DeviceKeyPress (device, event_type, event_class);
device: DEVICE
event_type: INT
event_class: INT

The value returned in event_type is the value that will be contained in the event type field of the
XDeviceKeyPressEvent when it is received by the client. The value returned in event_class is
the value that should be passed in making an XSelectExtensionEvent request to receive Devi-
ceKeyPress events.

For DeviceButtonPress events, the client may specify whether or not an implicit passive grab
should be done when the button is pressed. If the client wants to guarantee that it will receive a
DeviceButtonRelease event for each DeviceButtonPress event it receives, it should specify the
DeviceButtonPressGrab event class as well as the DeviceButtonPress event class. This res-
tricts the client in that only one client at a time may request DeviceButtonPress events from the
same device and window if any client specifies this class.

If any client has specified the DeviceButtonPressGrab class, any requests by any other client
that specify the same device and window and specify DeviceButtonPress or DeviceBut-
tonPressGrab will cause an Access error to be generated.

9

X Input Extension Protocol Specification X11, Release 5

If only the DeviceButtonPress class is specified, no implicit passive grab will be done when a
button is pressed on the device. Multiple clients may use this class to specify the same device
and window combination.

A client may also specify the DeviceOwnerGrabButton class. If it has specified both the Devi-
ceButtonPressGrab and the DeviceOwnerGrabButton classes, implicit passive grabs will
activate with owner_events set to True. If only the DeviceButtonPressGrab class is specified,
implicit passive grabs will activate with owner_events set to False.

The client may select DeviceMotion events only when a button is down. It does this by specify-
ing the event classes Button1Motion through Button5Motion, or ButtonMotion. An input dev-
ice will only support as many button motion classes as it has buttons.

2.8. Determining Selected Events
To determine which extension events are currently selected from a given window, use GetSelec-
tedExtensionEvents.

GetSelectedExtensionEvents
window: WINDOW

=>
this-client: LISTofEVENTCLASS
all-clients: LISTofEVENTCLASS

Errors: Window

This request returns two lists specifying the events selected on the specified window. One list
gives the extension events selected by this client from the specified window. The other list gives
the extension events selected by all clients from the specified window. This information is
equivalent to that returned by your-event-mask and all-event-masks in a GetWindowAttributes
request.

2.9. Controlling Event Propagation
Extension events propagate up the window hierarchy in the same manner as core events. If a
window is not interested in an extension event, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the
set of windows that receive a particular extension event.

Client programs may control extension event propagation through the use of the following two
requests.

XChangeDeviceDontPropagateList adds an event to or deletes an event from the
do_not_propagate list of extension events for the specified window. This list is maintained for
the life of the window, and is not altered if the client terminates.

ChangeDeviceDontPropagateList
window: WINDOW
eventclass: LISTofEVENTCLASS
mode: {AddToList, DeleteFromList}

Errors: Window, Class, Mode

This function modifies the list specifying the events that are not propagated to the ancestors of the
specified window. You may use the modes AddToList or DeleteFromList.

10

X Input Extension Protocol Specification X11, Release 5

GetDeviceDontPropagateList
window: WINDOW

Errors: Window
=>

dont-propagate-list: LISTofEVENTCLASS

This function returns a list specifying the events that are not propagated to the ancestors of the
specified window.

2.10. Sending Extension Events
One client program may send an event to another via the XSendExtensionEvent function.

The event in the XEvent structure must be one of the events defined by the input extension, so
that the X server can correctly byte swap the contents as necessary. The contents of the event are
otherwise unaltered and unchecked by the X server except to force send_event to True in the for-
warded event and to set the sequence number in the event correctly.

XSendExtensionEvent returns zero if the conversion-to-wire protocol failed, otherwise it returns
nonzero.

SendExtensionEvent
device: DEVICE
destination: WINDOW
propagate: BOOL
eventclass: LISTofEVENTCLASS
event: XEVENT

Errors: Device, Value, Class, Window

2.11. Getting Motion History

GetDeviceMotionEvents
device: DEVICE
start, stop: TIMESTAMP or CurrentTime

=>
nevents_return: CARD32
mode_return: {Absolute, Relative}
axis_count_return: CARD8
events: LISTofDEVICETIMECOORD

where

DEVICETIMECOORD: [data:LISTofINT32 time:TIMESTAMP]

Errors: Device, Match

This request returns all positions in the device’s motion history buffer that fall between the
specified start and stop times inclusive. If the start time is in the future, or is later than the stop
time, no positions are returned.

11

X Input Extension Protocol Specification X11, Release 5

The data field of the DEVICETIMECOORD structure is a sequence of data items. Each item is
of type INT32, and there is one data item per axis of motion reported by the device. The number
of axes reported by the device is returned in the axis_count variable.

The value of the data items depends on the mode of the device, which is returned in the mode
variable. If the mode is Absolute, the data items are the raw values generated by the device.
These may be scaled by the client program using the maximum values that the device can gen-
erate for each axis of motion that it reports. The maximum and minimum values for each axis are
reported by the ListInputDevices request.

If the mode is Relative, the data items are the relative values generated by the device. The client
program must choose an initial position for the device and maintain a current position by accu-
mulating these relative values.

2.12. Changing The Core Devices
These requests are provided to change which physical device is used as the X pointer or X key-
board. Using these requests may change the characteristics of the core devices. The new pointer
device may have a different number of buttons than the old one did, or the new keyboard device
may have a different number of keys or report a different range of keycodes. Client programs
may be running that depend on those characteristics. For example, a client program could allo-
cate an array based on the number of buttons on the pointer device, and then use the button
numbers received in button events as indicies into that array. Changing the core devices could
cause such client programs to behave improperly or abnormally terminate.

These requests change the X keyboard or X pointer device and generate an ChangeDeviceNotify
event and a MappingNotify event. The ChangeDeviceNotify event is sent only to those clients
that have expressed an interest in receiving that event via the XSelectExtensionEvent request.
The specified device becomes the new X keyboard or X pointer device. The location of the core
device does not change as a result of this request.

These requests fail and return AlreadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client. They fail and return GrabFrozen if either dev-
ice is frozen by the active grab of another client.

These requests fail with a BadDevice error if the specified device is invalid, or has not previously
been opened via OpenDevice.

To change the X keyboard device, use the ChangeKeyboardDevice request. The specified dev-
ice must support input class Keys (as reported in the ListInputDevices request) or the request will
fail with a BadMatch error. Once the device has successfully replaced one of the core devices, it
is treated as a core device until it is in turn replaced by another ChangeDevice request, or until
the server terminates. The termination of the client that changed the device will not cause it to
change back. Attempts to use the CloseDevice request to close the new core device will fail with
a BadDevice error.

The focus state of the new keyboard is the same as the focus state of the old X keyboard. If the
new keyboard was not initialized with a FocusRec, one is added by the ChangeKeyboardDevice
request. The X keyboard is assumed to have a KbdFeedbackClassRec. If the device was initial-
ized without a KbdFeedbackClassRec, one will be added by this request. The KbdFeed-
backClassRec will specify a null routine as the control procedure and the bell procedure.

ChangeKeyboardDevice
device: DEVICE

Errors: Device, Match
=>

status: Success, AlreadyGrabbed, Frozen

12

X Input Extension Protocol Specification X11, Release 5

To change the X pointer device, use the ChangePointerDevice request. The specified
device must support input class Valuators (as reported in the ListInputDevices request) or
the request will fail with a BadMatch error. The valuators to be used as the x- and y-axes
of the pointer device must be specified. Data from other valuators on the device will be
ignored.

The X pointer device does not contain a FocusRec. If the new pointer was initialized
with a FocusRec, it is freed by the ChangePointerDevice request. The X pointer is
assumed to have a ButtonClassRec and a PtrFeedbackClassRec. If the device was ini-
tialized without a ButtonClassRec or a PtrFeedbackClassRec, one will be added by this
request. The ButtonClassRec added will have no buttons, and the PtrFeed-
backClassRec will specify a null routine as the control procedure.

If the specified device reports absolute positional information, and the server implemen-
tation does not allow such a device to be used as the X pointer, the request will fail with a
BadDevice error.

Once the device has successfully replaced one of the core devices, it is treated as a core
device until it is in turn replaced by another ChangeDevice request, or until the server ter-
minates. The termination of the client that changed the device will not cause it to
change back. Attempts to use the CloseDevice request to close the new core device will
fail with a BadDevice error.

ChangePointerDevice
device: DEVICE
xaxis: CARD8
yaxis: CARD8

Errors: Device, Match
=>

status: Success, AlreadyGrabbed, Frozen

2.13. Event Synchronization And Core Grabs
Implementation of the input extension requires an extension of the meaning of event syn-
chronization for the core grab requests. This is necessary in order to allow window
managers to freeze all input devices with a single request.

The core grab requests require a pointer_mode and keyboard_mode argument. The
meaning of these modes is changed by the input extension. For the XGrabPointer and
XGrabButton requests, pointer_mode controls synchronization of the pointer device,
and keyboard_mode controls the synchronization of all other input devices. For the
XGrabKeyboard and XGrabKey requests, pointer_mode controls the synchronization
of all input devices except the X keyboard, while keyboard_mode controls the synchron-
ization of the keyboard. When using one of the core grab requests, the synchronization
of extension devices is controlled by the mode specified for the device not being grabbed.

2.14. Extension Active Grabs
Active grabs of extension devices are supported via the GrabDevice request in the same
way that core devices are grabbed using the core GrabKeyboard request, except that a
Device is passed as a function parameter. A list of events that the client wishes to receive
is also passed. The UngrabDevice request allows a previous active grab for an extension
device to be released.

To grab an extension device, use the GrabDevice request. The device must have previ-
ously been opened using the OpenDevice request.

13

X Input Extension Protocol Specification X11, Release 5

GrabDevice
device: DEVICE
grab-window: WINDOW
owner-events: BOOL
event-list: LISTofEVENTCLASS
this-device-mode: {Synchronous, Asynchronous}
other-device-mode: {Synchronous, Asynchronous}
time:TIMESTAMP or CurrentTime

=>
status: Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable

Errors: Device, Window, Value

This request actively grabs control of the specified input device. Further input events from this
device are reported only to the grabbing client. This request overrides any previous active grab by
this client for this device.

The event-list parameter is a pointer to a list of event classes. These are used to indicate which
events the client wishes to receive while the device is grabbed. Only event classes obtained from
the grabbed device are valid.

If owner-events is False, input events generated from this device are reported with respect to
grab-window, and are only reported if selected by being included in the event-list. If owner-
events is True, then if a generated event would normally be reported to this client, it is reported
normally, otherwise the event is reported with respect to the grab-window, and is only reported if
selected by being included in the event-list. For either value of owner-events, unreported events
are discarded.

If this-device-mode is Asynchronous, device event processing continues normally. If the device
is currently frozen by this client, then processing of device events is resumed. If this-device-
mode is Synchronous, the state of the grabbed device (as seen by means of the protocol) appears
to freeze, and no further device events are generated by the server until the grabbing client issues
a releasing AllowDeviceEvents request or until the device grab is released. Actual device input
events are not lost while the device is frozen; they are simply queued for later processing.

If other-device-mode is Asynchronous, event processing is unaffected by activation of the grab.
If other-device-mode is Synchronous, the state of all input devices except the grabbed one (as
seen by means of the protocol) appears to freeze, and no further events are generated by the
server until the grabbing client issues a releasing AllowDeviceEvents request or until the device
grab is released. Actual events are not lost while the devices are frozen; they are simply queued
for later processing.

This request generates DeviceFocusIn and DeviceFocusOut events.

This request fails and returns:

g AlreadyGrabbed If the device is actively grabbed by some other client.

g NotViewable If grab-window is not viewable.

g InvalidTime If the specified time is earlier than the last-grab-time for the specified device or
later than the current X server time. Otherwise, the last-grab-time for the specified device is
set to the specified time and CurrentTime is replaced by the current X server time.

g Frozen If the device is frozen by an active grab of another client.

If a grabbed device is closed by a client while an active grab by that client is in effect, that active
grab will be released. Any passive grabs established by that client will be released. If the device
is frozen only by an active grab of the requesting client, it is thawed.

To release a grab of an extension device, use UngrabDevice.

14

X Input Extension Protocol Specification X11, Release 5

UngrabDevice
device: DEVICE
time: TIMESTAMP or CurrentTime

Errors: Device

This request releases the device if this client has it actively grabbed (from either GrabDevice or
GrabDeviceKey) and releases any queued events. If any devices were frozen by the grab,
UngrabDevice thaws them. The request has no effect if the specified time is earlier than the
last-device-grab time or is later than the current server time.

This request generates DeviceFocusIn and DeviceFocusOut events.

An UngrabDevice is performed automatically if the event window for an active device grab
becomes not viewable.

2.15. Passively Grabbing A Key
Passive grabs of buttons and keys on extension devices are supported via the GrabDeviceButton
and GrabDeviceKey requests. These passive grabs are released via the UngrabDeviceKey and
UngrabDeviceButton requests.

To passively grab a single key on an extension device, use GrabDeviceKey. That device must
have previously been opened using the OpenDevice request.

GrabDeviceKey

device: DEVICE
keycode: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
modifier-device: DEVICE or NULL
grab-window: WINDOW
owner-events: BOOL
event-list: LISTofEVENTCLASS
this-device-mode: {Synchronous, Asynchronous}
other-device-mode: {Synchronous, Asynchronous}

Errors: Device, Match, Access, Window, Value

This request is analogous to the core GrabKey request. It establishes a passive grab on a device.
Consequently, In the future:

g IF the device is not grabbed and the specified key, which itself can be a modifier key, is logi-
cally pressed when the specified modifier keys logically are down on the specified modifier
device (and no other keys are down),

g AND no other modifier keys logically are down,

g AND EITHER the grab window is an ancestor of (or is) the focus window OR the grab win-
dow is a descendent of the focus window and contains the pointer,

g AND a passive grab on the same device and key combination does not exist on any ancestor
of the grab window,

g THEN the device is actively grabbed, as for GrabDevice, the last-device-grab time is set to
the time at which the key was pressed (as transmitted in the DeviceKeyPress event), and the
DeviceKeyPress event is reported.

The interpretation of the remaining arguments is as for GrabDevice. The active grab is ter-
minated automatically when logical state of the device has the specified key released

15

X Input Extension Protocol Specification X11, Release 5

(independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A key of AnyKey is equivalent to issuing the request for all
possible keycodes. Otherwise, the key must be in the range specified by min-keycode and max-
keycode in the ListInputDevices request. If it is not within that range, GrabDeviceKey gen-
erates a Value error.

NULL may be passed for the modifier_device. If the modifier_device is NULL, the core X key-
board is used as the modifier_device.

An Access error is generated if some other client has issued a GrabDeviceKey with the same
device and key combination on the same window. When using AnyModifier or AnyKey, the
request fails completely and the X server generates a Access error and no grabs are established if
there is a conflicting grab for any combination.

This request cannot be used to grab a key on the X keyboard device. The core GrabKey request
should be used for that purpose.

To release a passive grab of a single key on an extension device, use UngrabDeviceKey.

UngrabDeviceKey

device: DEVICE
keycode: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
modifier-device: DEVICE or NULL
grab-window: WINDOW

Errors: Device, Match, Window, Value, Alloc

This request is analogous to the core UngrabKey request. It releases the key combination on the
specified window if it was grabbed by this client. A modifier of AnyModifier is equivalent to
issuing the request for all possible modifier combinations (including the combination of no
modifiers). A key of AnyKey is equivalent to issuing the request for all possible keycodes. This
request has no effect on an active grab.

NULL may be passed for the modifier_device. If the modifier_device is NULL, the core X key-
board is used as the modifier_device.

2.16. Passively Grabbing A Button
To establish a passive grab for a single button on an extension device, use GrabDeviceButton.

GrabDeviceButton

device: DEVICE
button: BUTTON or AnyButton
modifiers: SETofKEYMASK or AnyModifier
modifier-device: DEVICE or NULL
grab-window: WINDOW
owner-events: BOOL
event-list: LISTofEVENTCLASS
this-device-mode: {Synchronous, Asynchronous}
other-device-mode: {Synchronous, Asynchronous}

16

X Input Extension Protocol Specification X11, Release 5

Errors: Device, Match, Window, Access, Value

This request is analogous to the core GrabButton request. It establishes an explicit passive grab
for a button on an extension input device. Since the server does not track extension devices, no
cursor is specified with this request. For the same reason, there is no confine-to parameter. The
device must have previously been opened using the OpenDevice request.

The GrabDeviceButton request establishes a passive grab on a device. Consequently, in the
future,

g IF the device is not grabbed and the specified button is logically pressed when the specified
modifier keys logically are down (and no other buttons or modifier keys are down),

g AND the grab window contains the device,

g AND a passive grab on the same device and button/ key combination does not exist on any
ancestor of the grab window,

g THEN the device is actively grabbed, as for GrabDevice, the last-grab time is set to the time
at which the button was pressed (as transmitted in the DeviceButtonPress event), and the
DeviceButtonPress event is reported.

The interpretation of the remaining arguments is as for GrabDevice. The active grab is ter-
minated automatically when logical state of the device has all buttons released (independent of
the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the physical
state if device event processing is frozen.

A modifier of AnyModifier is equivalent to issuing the request for all possible modifier combina-
tions (including the combination of no modifiers). It is not required that all modifiers specified
have currently assigned keycodes. A button of AnyButton is equivalent to issuing the request for
all possible buttons. It is not required that the specified button be assigned to a physical button.

NULL may be passed for the modifier_device. If the modifier_device is NULL, the core X key-
board is used as the modifier_device.

An Access error is generated if some other client has issued a GrabDeviceButton with the same
device and button combination on the same window. When using AnyModifier or AnyButton,
the request fails completely and the X server generates a Access error and no grabs are esta-
blished if there is a conflicting grab for any combination. The request has no effect on an active
grab.

This request cannot be used to grab a button on the X pointer device. The core GrabButton
request should be used for that purpose.

To release a passive grab of a button on an extension device, use UngrabDeviceButton.

UngrabDeviceButton

device: DEVICE
button: BUTTON or AnyButton
modifiers: SETofKEYMASK or AnyModifier
modifier-device: DEVICE or NULL
grab-window: WINDOW

Errors: Device, Match, Window, Value, Alloc

This request is analogous to the core UngrabButton request. It releases the passive button/key
combination on the specified window if it was grabbed by the client. A modifiers of
AnyModifier is equivalent to issuing the request for all possible modifier combinations (includ-
ing the combination of no modifiers). A button of AnyButton is equivalent to issuing the request

17

X Input Extension Protocol Specification X11, Release 5

for all possible buttons. This request has no effect on an active grab. The device must have previ-
ously been opened using the OpenDevice request otherwise a Device error will be generated.

NULL may be passed for the modifier_device. If the modifier_device is NULL, the core X key-
board is used as the modifier_device.

This request cannot be used to ungrab a button on the X pointer device. The core UngrabButton
request should be used for that purpose.

2.17. Thawing A Device
To allow further events to be processed when a device has been frozen, use AllowDeviceEvents.

AllowDeviceEvents
device: DEVICE
event-mode: {AsyncThisDevice, SyncThisDevice, AsyncOtherDevices, ReplayThisdev-
ice, AsyncAll, or SyncAll}
time:TIMESTAMP or CurrentTime

Errors: Device, Value

The AllowDeviceEvents request releases some queued events if the client has caused a device to
freeze. The request has no effect if the specified time is earlier than the last-grab time of the most
recent active grab for the client, or if the specified time is later than the current X server time.

The following describes the processing that occurs depending on what constant you pass to the
event-mode argument:

g If the specified device is frozen by the client, event processing for that device continues as
usual. If the device is frozen multiple times by the client on behalf of multiple separate
grabs, AsyncThisDevice thaws for all. AsyncThisDevice has no effect if the specified device
is not frozen by the client, but the device need not be grabbed by the client.

g If the specified device is frozen and actively grabbed by the client, event processing for that
device continues normally until the next button or key event is reported to the client. At this
time, the specified device again appears to freeze. However, if the reported event causes the
grab to be released, the specified device does not freeze. SyncThisDevice has no effect if the
specified device is not frozen by the client or is not grabbed by the client.

g If the specified device is actively grabbed by the client and is frozen as the result of an event
having been sent to the client (either from the activation of a GrabDeviceButton or from a
previous AllowDeviceEvents with mode SyncThisDevice, but not from a Grab), the grab is
released and that event is completely reprocessed. This time, however, the request ignores
any passive grabs at or above (towards the root) the grab-window of the grab just released.
The request has no effect if the specified device is not grabbed by the client or if it is not
frozen as the result of an event.

g If the remaining devices are frozen by the client, event processing for them continues as
usual. If the other devices are frozen multiple times by the client on behalf of multiple
separate grabs, AsyncOtherDevices ‘‘thaws’’ for all. AsyncOtherDevices has no effect if the
devices are not frozen by the client, but those devices need not be grabbed by the client.

g If all devices are frozen by the client, event processing (for all devices) continues normally
until the next button or key event is reported to the client for a grabbed device (button event
for the grabbed device, key or motion event for the device), at which time the devices again
appear to freeze. However, if the reported event causes the grab to be released, then the dev-
ices do not freeze (but if any device is still grabbed, then a subsequent event for it will still
cause all devices to freeze). SyncAll has no effect unless all devices are frozen by the client.
If any device is frozen twice by the client on behalf of two separate grabs, SyncAll "thaws"
for both (but a subsequent freeze for SyncAll will only freeze each device once).

18

X Input Extension Protocol Specification X11, Release 5

g If all devices are frozen by the client, event processing (for all devices) continues normally.
If any device is frozen multiple times by the client on behalf of multiple separate grabs, Asyn-
cAll "thaws" for all. AsyncAll has no effect unless all devices are frozen by the client.

AsyncThisDevice, SyncThisDevice, and ReplayThisDevice have no effect on the processing of
events from the remaining devices. AsyncOtherDevices has no effect on the processing of events
from the specified device. When the event_mode is SyncAll or AsyncAll, the device parameter is
ignored.

It is possible for several grabs of different devices (by the same or different clients) to be active
simultaneously. If a device is frozen on behalf of any grab, no event processing is performed for
the device. It is possible for a single device to be frozen because of several grabs. In this case,
the freeze must be released on behalf of each grab before events can again be processed.

2.18. Controlling Device Focus
The current focus window for an extension input device can be determined using the GetDevi-
ceFocus request. Extension devices are focused using the SetDeviceFocus request in the same
way that the keyboard is focused using the SetInputFocus request, except that a device is
specified as part of the request. One additional focus state, FollowKeyboard, is provided for
extension devices.

To get the current focus state, revert state, and focus time of an extension device, use GetDevi-
ceFocus.

GetDeviceFocus

device: DEVICE
=>

focus: WINDOW, PointerRoot, FollowKeyboard, or None
revert-to: Parent, PointerRoot, FollowKeyboard, or None
focus-time: TIMESTAMP

Errors: Device, Match

This request returns the current focus state, revert-to state, and last-focus-time of an extension
device.

To set the focus of an extension device, use SetDeviceFocus.

SetDeviceFocus
device: DEVICE
focus: WINDOW, PointerRoot, FollowKeyboard, or None
revert-to: Parent, PointerRoot, FollowKeyboard, or None
focus-time: TIMESTAMP

Errors: Device, Window, Value, Match

This request changes the focus for an extension input device and the last-focus-change-time. The
request has no effect if the specified time is earlier than the last-focus-change-time or is later than
the current X server time. Otherwise, the last-focus-change-time is set to the specified time, with
CurrentTime replaced by the current server time.

The action taken by the server when this request is requested depends on the value of the focus
argument:

19

X Input Extension Protocol Specification X11, Release 5

g If the focus argument is None, all input events from this device will be discarded until a new
focus window is set. In this case, the revert-to argument is ignored.

g If a window ID is assigned to the focus argument, it becomes the focus window of the device.
If an input event from the device would normally be reported to this window or to one of its
inferiors, the event is reported normally. Otherwise, the event is reported relative to the focus
window.

g If you assign PointerRoot to the focus argument, the focus window is dynamically taken to
be the root window of whatever screen the pointer is on at each input event. In this case, the
revert-to argument is ignored.

g If you assign FollowKeyboard to the focus argument, the focus window is dynamically taken
to be the same as the focus of the X keyboard at each input event.

The specified focus window must be viewable at the time of the request (else a Match error). If
the focus window later becomes not viewable, the X server evaluates the revert-to argument to
determine the new focus window.

g If you assign RevertToParent to the revert-to argument, the focus reverts to the parent (or
the closest viewable ancestor), and the new revert-to value is taken to be RevertToNone.

g If you assign RevertToPointerRoot, RevertToFollowKeyboard, or RevertToNone to the
revert-to argument, the focus reverts to that value.

When the focus reverts, the X server generates DeviceFocusIn and DeviceFocusOut events, but
the last-focus-change time is not affected.

This request causes the X server to generate DeviceFocusIn and DeviceFocusOut events.

2.19. Controlling Device Feedback
To get the settings of feedbacks on an extension device, use GetFeedbackControl. This request
provides functionality equivalent to the core GetKeyboardControl and GetPointerControl
functions. It also provides a way to control displays associated with an input device that are
capable of displaying an integer or string.

GetFeedbackControl
device: DEVICE

=>
num_feedbacks_return: CARD16
return_value: LISTofFEEDBACKSTATE

where

FEEDBACKSTATE: {KbdFeedbackState, PtrFeedbackState, IntegerFeedbackState,
StringFeedbackState, BellFeedbackState, LedFeedbackState}

Feedbacks are reported by class. Those feedbacks that are reported for the core keyboard device
are in class KbdFeedback, and are returned in the KbdFeedbackState structure. The members
of that structure are as follows:

CLASS Kbd: [class: CARD8
length: CARD16
feedback id: CARD8
key_click_percent: CARD8
bell_percent: CARD8
bell_pitch: CARD16
bell_duration: CARD16

20

X Input Extension Protocol Specification X11, Release 5

led_value: BITMASK
global_auto_repeat: {AutoRepeatModeOn, AutoRepeatMode-
Off}
auto_repeats: LISTofCARD8]

Those feedbacks that are equivalent to those reported for the core pointer are in feedback class
PtrFeedback and are reported in the PtrFeedbackState structure. The members of that structure
are:

CLASS Ptr: [class: CARD8
length: CARD16
feedback id: CARD8
accelNumerator: CARD16
accelDenominator: CARD16
threshold: CARD16]

Some input devices provide a means of displaying an integer. Those devices will support feed-
back class IntegerFeedback, which is reported in the IntegerFeedbackState structure. The
members of that structure are:

CLASS Integer: [class: CARD8
length: CARD16
feedback id: CARD8
resolution: CARD32
min-val: INT32
max-val: INT32]

Some input devices provide a means of displaying a string. Those devices will support feedback
class StringFeedback, which is reported in the StringFeedbackState structure. The members of
that structure are:

CLASS String: [class: CARD8
length: CARD16
feedback id: CARD8
max_symbols: CARD16
num_keysyms_supported: CARD16
keysyms_supported: LISTofKEYSYM]

Some input devices contain a bell. Those devices will support feedback class BellFeedback,
which is reported in the BellFeedbackState structure. The members of that structure are:

CLASS Bell: [class: CARD8
length: CARD16
feedback id: CARD8
percent: CARD8
pitch: CARD16
duration: CARD16]

The percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive, if possible.
Setting to −1 restores the default. Other negative values generate a Value error.

The pitch sets the pitch (specified in Hz) of the bell, if possible. Setting to −1 restores the default.
Other negative values generate a Value error.

21

X Input Extension Protocol Specification X11, Release 5

The duration sets the duration (specified in milliseconds) of the bell, if possible. Setting to −1
restores the default. Other negative values generate a Value error.

A bell generator connected with the console but not directly on the device is treated as if it were
part of the device. Some input devices contain LEDs. Those devices will support feedback class
Led, which is reported in the LedFeedbackState structure. The members of that structure are:

CLASS Led: [class: CARD8
length: CARD16
feedback id: CARD8
led_mask: BITMASK
led_value: BITMASK]

Each bit in led_mask indicates that the corresponding led is supported by the feedback. At most
32 LEDs per feedback are supported. No standard interpretation of LEDs is defined.

This function will fail with a BadMatch error if the device specified in the request does not sup-
port feedbacks.

Errors: Device, Match

To change the settings of a feedback on an extension device, use ChangeFeedbackControl.

ChangeFeedbackControl
device: DEVICE
feedbackid: CARD8
value-mask: BITMASK
value: FEEDBACKCONTROL

Errors: Device, Match, Value

FEEDBACKCONTROL: {KBDFEEDBACKCONTROL, PTRFEEDBACKCONTROL,
INTEGERFEEDBACKCONTROL, STRINGFEEDBACKCON-
TROL, BELLFEEDBACKCONTROL, LEDFEEDBACKCON-
TROL}

Feedback controls are grouped by class. Those feedbacks that are equivalent to those supported
by the core keyboard are controlled by feedback class KbdFeedbackClass using the KbdFeed-
backControl structure. The members of that structure are:

KBDFEEDBACKCTL: [class: CARD8
length: CARD16
feedback id: CARD8
key_click_percent: INT8
bell_percent: INT8
bell_pitch: INT16
bell_duration: INT16
led_mask: INT32
led_value: INT32
key: KEYCODE
auto_repeat_mode: {AutoRepeatModeOn, AutoRepeatMode-
Off, AutoRepeatModeDefault}]

22

X Input Extension Protocol Specification X11, Release 5

The key_click_percent sets the volume for key clicks between 0 (off) and 100 (loud) inclusive, if
possible. Setting to −1 restores the default. Other negative values generate a Value error.

If both auto_repeat_mode and key are specified, then the auto_repeat_mode of that key is
changed, if possible. If only auto_repeat_mode is specified, then the global auto-repeat mode for
the entire keyboard is changed, if possible, without affecting the per-key settings. It is a Match
error if a key is specified without an auto_repeat_mode.

The order in which controls are verified and altered is server-dependent. If an error is generated,
a subset of the controls may have been altered.

Those feedback controls equivalent to those of the core pointer are controlled by feedback class
PtrFeedbackClass using the PtrFeedbackControl structure. The members of that structure are
as follows:

PTRFEEDBACKCTL: [class: CARD8
length: CARD16
feedback id: CARD8
accelNumerator: INT16
accelDenominator: INT16
threshold: INT16]

The acceleration, expressed as a fraction, is a multiplier for movement. For example, specifying
3/1 means the device moves three times as fast as normal. The fraction may be rounded arbi-
trarily by the X server. Acceleration only takes effect if the device moves more than threshold
pixels at once and only applies to the amount beyond the value in the threshold argument. Set-
ting a value to -1 restores the default. The values of the do-accel and do-threshold arguments
must be nonzero for the device values to be set. Otherwise, the parameters will be unchanged.
Negative values generate a Value error, as does a zero value for the accel-denominator argument.

Some devices are capable of displaying an integer. This is done using feedback class Integer-
FeedbackClass using the IntegerFeedbackControl structure. The members of that structure are
as follows:

INTEGERCTL: [class: CARD8
length: CARD16
feedback id: CARD8
int_to_display: INT32]

Some devices are capable of displaying an string. This is done using feedback class StringFeed-
backClass using the StringFeedbackCtl structure. The members of that structure are as follows:

STRINGCTL: [class: CARD8
length: CARD16
feedback id: CARD8
syms_to_display: LISTofKEYSYMS]

Some devices contain a bell. This is done using feedback class BellFeedbackClass using the
BellFeedbackControl structure. The members of that structure are as follows:

BELLCTL: [class: CARD8
length: CARD16
feedback id: CARD8
percent: INT8

23

X Input Extension Protocol Specification X11, Release 5

pitch: INT16
duration: INT16]

Some devices contain leds. These can be turned on and off using the LedFeedbackControl
structure. The members of that structure are as follows:

LEDCTL: [class: CARD8
length: CARD16
feedback id: CARD8
led_mask: BITMASK
led_value: BITMASK]

Errors: Device, Match, Value

2.20. Ringing a Bell on an Input Device
To ring a bell on an extension input device, use DeviceBell.

DeviceBell

device: DEVICE
feedbackclass: CARD8
feedbackid: CARD8
percent: INT8

Errors: Device, Value

This request is analogous to the core Bell request. It rings the specified bell on the specified input
device feedback, using the specified volume. The specified volume is relative to the base volume
for the feedback. If the value for the percent argument is not in the range -100 to 100 inclusive, a
Value error results. The volume at which the bell rings when the percent argument is nonnega-
tive is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

To change the base volume of the bell, use ChangeFeedbackControl request.

2.21. Controlling Device Encoding
To get the keyboard mapping of an extension device that has keys, use GetDeviceKeyMapping.

GetDeviceKeyMapping

device: DEVICE
first-keycode: KEYCODE
count: CARD8

=>
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM

Errors: Device, Match, Value

24

X Input Extension Protocol Specification X11, Release 5

This request returns the symbols for the specified number of keycodes for the specified extension
device, starting with the specified keycode. The first-keycode must be greater than or equal to
min-keycode as returned in the connection setup (else a Value error), and

first-keycode + count − 1

must be less than or equal to max-keycode as returned in the connection setup (else a Value
error). The number of elements in the keysyms list is

count * keysyms-per-keycode

and KEYSYM number N (counting from zero) for keycode K has an index (counting from zero)
of

(K − first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode value is chosen arbitrarily by the server to be large
enough to report all requested symbols. A special KEYSYM value of NoSymbol is used to fill in
unused elements for individual keycodes.

If the specified device has not first been opened by this client via OpenDevice, or if that device
does not support input class Keys, this request will fail with a Device error.

To change the keyboard mapping of an extension device that has keys, use ChangeDeviceKey-
Mapping.

ChangeDeviceKeyMapping
device: DEVICE
first-keycode: KEYCODE
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM
num_codes: CARD8

Errors: Device, Match, Value, Alloc

This request is analogous to the core ChangeKeyMapping request. It defines the symbols for the
specified number of keycodes for the specified extension device. If the specified device has not
first been opened by this client via OpenDevice, or if that device does not support input class
Keys, this request will fail with a Device error.

The number of elements in the keysyms list must be a multiple of keysyms_per_keycode. Other-
wise, ChangeDeviceKeyMapping generates a Length error. The specified first_keycode must
be greater than or equal to the min_keycode value returned by the ListInputDevices request, or
this request will fail with a Value error. In addition, if the following expression is not less than
the max_keycode value returned by the ListInputDevices request, the request will fail with a
Value error:

first_keycode + (num_codes / keysyms_per_keycode) - 1

To obtain the keycodes that are used as modifiers on an extension device that has keys, use
GetDeviceModifierMapping.

GetDeviceModifierMapping
device: DEVICE

=>
keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

25

X Input Extension Protocol Specification X11, Release 5

Errors: Device, Match

This request is analogous to the core GetModifierMapping request. This request returns the key-
codes of the keys being used as modifiers. The number of keycodes in the list is 8*keycodes-
per-modifier. The keycodes are divided into eight sets, with each set containing keycodes-per-
modifier elements. The sets are assigned in order to the modifiers Shift, Lock, Control, Mod1,
Mod2, Mod3, Mod4, and Mod5. The keycodes-per-modifier value is chosen arbitrarily by the
server; zeroes are used to fill in unused elements within each set. If only zero values are given in
a set, the use of the corresponding modifier has been disabled. The order of keycodes within each
set is chosen arbitrarily by the server.

To set which keycodes that are to be used as modifiers for an extension device, use
SetDeviceModifierMapping.

SetDeviceModifierMapping

device: DEVICE
keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

=>
status: {Success, Busy, Failed}

Errors: Device, Match, Value, Alloc

This request is analogous to the core SetModifierMapping request. This request specifies the
keycodes (if any) of the keys to be used as modifiers. The number of keycodes in the list must be
8*keycodes-per-modifier (else a Length error). The keycodes are divided into eight sets, with
the sets, with each set containing keycodes-per-modifier elements. The sets are assigned in order
to the modifiers Shift, Lock, Control, Mod1, Mod2, Mod3, Mod4, and Mod5. Only non-zero
keycode values are used within each set; zero values are ignored. All of the non-zero keycodes
must be in the range specified by min-keycode and max-keycode in the ListInputDevices request
(else a Value error). The order of keycodes within a set does not matter. If no non-zero values
are specified in a set, the use of the corresponding modifier is disabled, and the modifier bit will
always be zero. Otherwise, the modifier bit will be one whenever at least one of the keys in the
corresponding set is in the down position.

A server can impose restrictions on how modifiers can be changed (for example, if certain keys
do not generate up transitions in hardware or if multiple keys per modifier are not supported).
The status reply is Failed if some such restriction is violated, and none of the modifiers are
changed.

If the new non-zero keycodes specified for a modifier differ from those currently defined, and any
(current or new) keys for that modifier are logically in the down state, then the status reply is
Busy, and none of the modifiers are changed.

This request generates a DeviceMappingNotify event on a Success status. The Devi-
ceMappingNotify event will be sent only to those clients that have expressed an interest in
receiving that event via the XSelectExtensionEvent request.

A X server can impose restrictions on how modifiers can be changed, for example, if certain keys
do not generate up transitions in hardware or if multiple modifier keys are not supported. If some
such restriction is violated, the status reply is MappingFailed , and none of the modifiers are
changed. If the new keycodes specified for a modifier differ from those currently defined and any
(current or new) keys for that modifier are in the logically down state, the status reply is Map-
pingBusy, and none of the modifiers are changed.

26

X Input Extension Protocol Specification X11, Release 5

2.22. Controlling Button Mapping
These requests are analogous to the core GetPointerMapping and ChangePointerMapping
requests. They allow a client to determine the current mapping of buttons on an extension dev-
ice, and to change that mapping.

To get the current button mapping for an extension device, use GetDeviceButtonMapping.

GetDeviceButtonMapping
device: DEVICE
nmap: CARD8

=>
map_return: LISTofCARD8

Errors: Device, Match

The GetDeviceButtonMapping function returns the current mapping of the buttons on the
specified device. Elements of the list are indexed starting from one. The length of the list indi-
cates the number of physical buttons. The nominal mapping is the identity mapping map[i]=i.

nmap indicates the number of elements in the map_return array. Only the first nmap entries
will be copied by the library into the map_return array.

To set the button mapping for an extension device, use SetDeviceButtonMapping.

SetDeviceButtonMapping
device: DEVICE
map: LISTofCARD8
nmap: CARD8

=>
status: CARD8

Errors: Device, Match, Value

The SetDeviceButtonMapping function sets the mapping of the specified device and causes the
X server to generate a DeviceMappingNotify event on a status of MappingSuccess. Elements
of the list are indexed starting from one. The length of the list, specified in nmap, must be the
same as GetDeviceButtonMapping would return. Otherwise, SetDeviceButtonMapping gen-
erates a Value error. A zero element disables a buttons, and elements are not restricted in value
by the number of physical buttons. However, no two elements can have the same nonzero value.
Otherwise, this function generates a Value error. If any of the buttons to be altered are in the
down state, the status reply is MappingBusy and the mapping is not changed.

2.23. Obtaining The State Of A Device
To obtain vectors that describe the state of the keys, buttons and valuators of an extension device,
use QueryDeviceState.

QueryDeviceState
device: DEVICE

=>
device-id: CARD8
data: LISTofINPUTCLASS

27

X Input Extension Protocol Specification X11, Release 5

where

INPUTCLASS: {VALUATOR, BUTTON, KEY}

CLASS VALUATOR: [class: CARD8
num_valuators: CARD8
mode: CARD8

#x01 device mode
(0 = Relative, 1 = Absolute)

#x02 proximity state
(0 = InProximity, 1 = OutOfProximity)

valuators: LISTofINT32]

CLASS BUTTON: [class: CARD8
num_buttons: CARD8
buttons: LISTofCARD8]

CLASS KEY: [class: CARD8
num_keys: CARD8
keys: LISTofCARD8]

Errors: Device

The QueryDeviceState request returns the current logical state of the buttons, keys, and valuators
on the specified input device. The buttons and keys arrays, byte N (from 0) contains the bits for
key or button 8N to 8N+7 with the least significant bit in the byte representing key or button 8N.

If the device has valuators, a bit in the mode field indicates whether the device is reporting Abso-
lute or Relative data. If it is reporting Absolute data, the valuators array will contain the current
value of the valuators. If it is reporting Relative data, the valuators array will contain undefined
data.

If the device reports proximity information, a bit in the mode field indicates whether the device is
InProximity or OutOfProximity.

3. Events
The input extension creates input events analogous to the core input events. These extension
input events are generated by manipulating one of the extension input devices.

3.1. Button, Key, and Motion Events
DeviceKeyPress
DeviceKeyRelease
DeviceButtonPress,
DeviceButtonRelease
DeviceMotionNotify

device: CARD8
root, event: WINDOW
child: Window or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
detail: <see below>
state: SETofKEYBUTMASK
time: TIMESTAMP

28

X Input Extension Protocol Specification X11, Release 5

These events are generated when a key, button, or valuator logically changes state. The genera-
tion of these logical changes may lag the physical changes, if device event processing is frozen.
Note that DeviceKeyPress and DeviceKeyRelease are generated for all keys, even those mapped
to modifier bits. The ‘‘source’’ of the event is the window the pointer is in. The window with
respect to which the event is normally reported is found by looking up the hierarchy (starting with
the source window) for the first window on which any client has selected interest in the event.
The actual window used for reporting can be modified by active grabs and by the focus
window.The window the event is reported with respect to is called the ‘‘event’’ window.

The root is the root window of the ‘‘source’’ window, and root-x and root-y are the pointer coor-
dinates relative to root’s origin at the time of the event. Event is the ‘‘event’’ window. If the
event window is on the same screen as root, then event-x and event-y are the pointer coordinates
relative to the event window’s origin. Otherwise, event-x and event-y are zero. If the source
window is an inferior of the event window, then child is set to the child of the event window that
is an ancestor of (or is) the source window. Otherwise, it is set to None. The state component
gives the logical state of the buttons on the core X pointer and modifier keys on the core X key-
board just before the event. The detail component type varies with the event type:
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Event Componentiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DeviceKeyPress,
DeviceKeyRelease

KEYCODE
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DeviceButtonPress,
DeviceButtonRelease

BUTTON
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DeviceMotionNotify { Normal , Hint }iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic

c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

The granularity of motion events is not guaranteed, but a client selecting for motion events is
guaranteed to get at least one event when a valuator changes. If DeviceMotionHint is selected,
the server is free to send only one DeviceMotionNotify event (with detail Hint) to the client for
the event window, until either a key or button changes state, the pointer leaves the event window,
or the client issues a QueryDeviceState or GetDeviceMotionEvents request.

3.2. DeviceValuator Event
DeviceValuator

device: CARD8
device_state: SETofKEYBUTMASK
num_valuators: CARD8
first_valuator: CARD8
valuators: LISTofINT32

DeviceValuator events are generated to contain valuator information for which there is
insufficient space in DeviceKey, DeviceButton, DeviceMotion, and Proximity wire events. For
events of these types, a second event of type DeviceValuator follows immediately. The library
combines these events into a single event that a client can receive via XNextEvent. DeviceValua-
tor events are not selected for by clients, they only exist to contain information that will not fit
into some event selected by clients.

The device_state component gives the state of the buttons and modifiers on the device generating
the event.

Extension motion devices may report motion data for a variable number of axes. The valuators
array contains the values of all axes reported by the device. If more than 6 axes are reported,
more than one DeviceValuator event will be sent by the server, and more than one DeviceKey,
DeviceButton, DeviceMotion, or Proximity event will be reported by the library. Clients should
examine the corresponding fields of the event reported by the library to determine the total
number of axes reported, and the first axis reported in the current event. Axes are numbered
beginning with zero.

29

X Input Extension Protocol Specification X11, Release 5

For Button, Key and Motion events on a device reporting absolute motion data the current value
of the device’s valuators is reported. For devices that report relative data, Button and Key events
may be followed by a DeviceValuator event that contains 0s in the num_valuators field. In this
case, only the device_state component will have meaning.

3.3. Device Focus Events
DeviceFocusIn
DeviceFocusOut

device: CARD8
time: TIMESTAMP
event: WINDOW
mode: { Normal, WhileGrabbed, Grab, Ungrab}
detail: { Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual, Pointer, PointerRoot,
None}

These events are generated when the input focus changes and are reported to clients selecting
DeviceFocusChange for the specified device and window. Events generated by SetDeviceFocus
when the device is not grabbed have mode Normal. Events generated by SetDeviceFocus when
the device is grabbed have mode WhileGrabbed. Events generated when a device grab actives
have mode Grab, and events generated when a device grab deactivates have mode Ungrab.

All DeviceFocusOut events caused by a window unmap are generated after any UnmapNotify
event, but the ordering of DeviceFocusOut with respect to generated EnterNotify, LeaveNotify,
VisibilityNotify and Expose events is not constrained.

DeviceFocusIn and DeviceFocusOut events are generated for focus changes of extension dev-
ices in the same manner as focus events for the core devices are generated.

3.4. Device State Notify Event
DeviceStateNotify

time: TIMESTAMP
device: CARD8
num_keys: CARD8
num_buttons: CARD8
num_valuators: CARD8
classes_reported: CARD8 {SetOfDeviceMode | SetOfInputClass}

SetOfDeviceMode:
#x80 ProximityState

0 = InProxmity, 1 = OutOfProximity
#x40 Device Mode

(0 = Relative, 1 = Absolute)
SetOfInputClass:

#x04 reporting valuators
#x02 reporting buttons
#x01 reporting keys

buttons: LISTofCARD8
keys: LISTofCARD8
valuators: LISTofCARD32

This event reports the state of the device just as in the QueryDeviceState request. This event is
reported to clients selecting DeviceStateNotify for the device and window and is generated
immediately after every EnterNotify and DeviceFocusIn. If the device has no more than 32 but-
tons, no more than 32 keys, and no more than 3 valuators, This event can report the state of the
device. If the device has more than 32 buttons, the event will be immediately followed by a Dev-
iceButtonStateNotify event. If the device has more than 32 keys, the event will be followed by a
DeviceKeyStateNotify event. If the device has more than 3 valuators, the event will be followed

30

X Input Extension Protocol Specification X11, Release 5

by one or more DeviceValuator events.

3.5. Device KeyState and ButtonState Notify Events
DeviceKeyStateNotify

device: CARD8
keys: LISTofCARD8

DeviceButtonStateNotify

device: CARD8
buttons: LISTofCARD8

These events contain information about the state of keys and buttons on a device that will not fit
into the DeviceStateNotify wire event. These events are not selected by clients, rather they may
immediately follow a DeviceStateNotify wire event and be combined with it into a single Devi-
ceStateNotify client event that a client may receive via XNextEvent.

3.6. DeviceMappingNotify Event
DeviceMappingNotify

time: TIMESTAMP
device: CARD8
request: CARD8
first_keycode: CARD8
count: CARD8

This event reports a change in the mapping of keys, modifiers, or buttons on an extension device.
This event is reported to clients selecting DeviceMappingNotify for the device and window and
is generated after every client SetDeviceButtonMapping, ChangeDeviceKeyMapping, or
ChangeDeviceModifierMapping request.

3.7. ChangeDeviceNotify Event
ChangeDeviceNotify

device: CARD8
time: TIMESTAMP
request: CARD8

This event reports a change in the physical device being used as the core X keyboard or X pointer
device. ChangeDeviceNotify events are reported to clients selecting ChangeDeviceNotify for
the device and window and is generated after every client ChangeKeyboardDevice or
ChangePointerDevice request.

3.8. Proximity Events
ProximityIn
ProximityOut

device: CARD8
root, event: WINDOW
child: Window or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INT16
state: SETofKEYBUTMASK
time: TIMESTAMP
device-state: SETofKEYBUTMASK
axis-count: CARD8
first-axis: CARD8
axis-data: LISTofINT32

31

X Input Extension Protocol Specification X11, Release 5

These events are generated by some devices (such as graphics tablets or touchscreens) to indicate
that a stylus has moved into or out of contact with a positional sensing surface.

The ‘‘source’’ of the event is the window the pointer is in. The window with respect to which the
event is normally reported is found by looking up the hierarchy (starting with the source window)
for the first window on which any client has selected interest in the event. The actual window
used for reporting can be modified by active grabs and by the focus window.The window the
event is reported with respect to is called the ‘‘event’’ window.

The root is the root window of the ‘‘source’’ window, and root-x and root-y are the pointer coor-
dinates relative to root’s origin at the time of the event. Event is the ‘‘event’’ window. If the
event window is on the same screen as root, then event-x and event-y are the pointer coordinates
relative to the event window’s origin. Otherwise, event-x and event-y are zero. If the source
window is an inferior of the event window, then child is set to the child of the event window that
is an ancestor of (or is) the source window. Otherwise, it is set to None. The state component
gives the logical state of the buttons on the core X pointer and modifier keys on the core X key-
board just before the event. The device-state component gives the state of the buttons and
modifiers on the device generating the event.

32

X Input Extension Protocol Specification X11, Release 5

33

